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Uncovering the differences and similarities between
physical and virtual mobility
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Extended Abstract

In recent years, scientists have witnessed an explosion of extensive geolocated datasets related
to human movement, enabling them to quantitatively study individual and collective mobility
patterns and to generate models that can capture and reproduce the spatio-temporal structures
and regularities in human trajectories [1]. Human mobility studies are especially important for
applications such as estimating migration flows, traffic forecasting, urban planning, mitigating
pollution, and epidemic modelling [2-4]. A particularly rich source of data has been from
geotagged traces, including Call Data Records (CDRs) and location-based social networking
services (LSBNs). There are several common regularities that have been observed across these
studies, including bursty activity rates [5], tendencies to visit a select few locations dispropor-
tionately more than others, and a decreasing likelihood to explore as time goes on [6]. On the
basis of these findings, a series of phenomenological models have been proposed to explain
observed regularities [7, 8].

However, with the advent of the World Wide Web, it is possible to define and study an
entirely new dimension of human mobility, that is, in the virtual space, a feature that has been
rapidly gaining attention [9, 10]. This is of course natural, given that an increasing fraction of
human activities such as shopping, information consumption, education, and social interaction
are being replaced by their online counterparts. This phenomenon is relatively recent (on a
biological time-scale) and much remains to be uncovered; therefore, a better understanding of
the long-term impacts of such changes in behaviour and the corresponding challenges is crucial.

Increasing evidence suggests that online activity, including virtual mobility, is governed by
similar mechanisms influencing offline activity [11] Furthermore, many statistical regularities
observed in physical movement have also been observed in virtual movement, including the
distribution of visitation frequencies to locations, power-law distributions of activity rates in
on-line bookmarking, and in the special case of virtual worlds, the heavy-tailed distribution of
displacements (a feature that is unreproducible in most online movement, due to the lack of a
metric space). Even more strikingly, a method of characterization of individuals according to
whether they have exploratory or saturation behaviour in terms of location discovery, has been
successfully adapted to Web browsing [12], leading to similar findings as those obtained from
the analyses of physical trajectories [13].

At first blush, the observed similarity in mobility trends in physical and virtual domains is
rather surprising. In particular, physical movement is necessarily constrained by temporal and
economic costs in terms of moving from one location to the other. Yet, no such limitations
exist while navigating the Web, which is neither economically (for the most part) nor spatially
bounded. Furthermore, despite the recent spate of research on online activities, there are rel-
atively fewer studies conducting a direct comparison between physical and virtual mobility.
While much has been said about their commonalities, less attention has been devoted to their
differences, specifically, the role played by the inherent spatial costs in physical movement.

To fill this gap, we conduct a systematic analysis of the similarities and differences be-
tween online and offline movement. We study one virtual and two physical datasets, finding
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that the differences arising from the cost associated with spatial movement, manifest as dif-
ferences in temporal mobility statistics primarily at shorter time-scales corresponding to the
intra-day regime (see Figure 1A-E). Once we move to the time-independent space of events,
that is sequences of location visits, these differences dissipate, and the statistical patterns are
essentially indistinguishable, pointing to a common mechanism underlying both behaviours
(see Figure 1F-QG).
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Figure 1: (A) P(7) plotted at the resolution of seconds, indicating noticeably more rapid activity
in Web browsing as compared to moving between physical locations. The latter exhibits distinct
scaling regimes at the intra- and inter-day levels, with a flatter distribution in the intra-day
regime. Hourly features disappear at the resolution of days (B) where all three datasets exhibit
a scaling of the form P(7) ~ t~%. (C) The distribution of inter-return times plotted with linear
bins. Each peak corresponds to integer-days, and all three datasets indicate a clear circadian
pattern. (D) Inter-return time distributions plotted with logarithmic bins. All three datasets
follow a truncated power-law form p(Ar) ~ Ar—B exp(—Ar /A ) shown as dashed curve. (E) The
number of discovered unique locations as a function of time S(¢). While, all datasets scale sub-
linearly S(z) ~ t* (fits shown as dashed curves), an order of magnitude separates the number
of discovered locations in the Web as compared to physical movement. (F) The number of
unique locations visited as a function of event count S(n). Unlike for S(z), the trends in all
three datasets are similar, whereby S(n) ~ n? with ¥ =~ 0.8. (G) The recency effect is present
in both the virtual and physical domains, with the distribution of unique intermediate locations
visited, before returning to a given location P(x) following a truncated power-law distribution,
P(k) ~ kK Sexp(—x/8), with a common scaling exponent & ~ 1.5 (inset). After rescaling,
with respect to the cut-offs, all three distributions collapse on to the same curve (shown as
dashed line).(H) The frequency distribution of location visits for all three datasets follow the
form P(v) ~ v~ with roughly similar exponents, however we note the presence of exponential
cut-offs exp (—v/0) in the physical mobility distributions.



