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Extended Abstract
Socioeconomic segregation is considered one of the main factors behind the emergence of
large-scale inequalities in urban areas and its characterisation is fundamental to understanding
a variety of social, technological, and economical processes. A typical example is the segre-
gation of urban areas by socio-economic indicators, including ethnicity, income, education or
religion, which is known to be associated with urban wealth, security, and livability [1]. The
standard approach in this case is to devise measures of how the local density and heterogeneity
of the property under study, as obtained from census data at a given scale, compares with the
distribution at the system level, under the assumption that in a non-segregated system, the local
distribution of, say, ethnicity would closely mirror the overall distribution in the city level [2].
Despite the vast existing literature on the topic, quantifying spatial segregation is still problem-
atic, mainly because the proposed measures depend on the scale at which neighbourhoods are
defined, on the granularity of the census data, or on the presence of one or more free parameters.

In this work, we propose a framework to quantify the multilevel segregation of a city, and to
compare the segregation of different cities, based on the statistics of random walks on graphs [3,
4, 5]. The adjacency relations between an urban system’s neighbourhoods (census areas) are
represented as a spatially-embedded graph G(V,E). We assume that the population of the city is
divided into Γ classes (which could correspond to ethnic groups, income or education, etc.), so
that each neighbourhood i∈V is assigned to a vector xi ∈RΓ whose components are the number
of people of each class living in i. We consider the time series of node properties generated by
the trajectories of an unbiased random walker through the graph G, and we analyse the spatial
distribution of the Class Coverage Time (CCT). In particular, we look at the average fraction
of distinct classes encountered by the walker up to time t when it started from node i at time 0,
namely W i(t). We define the Class Coverage Time (CCT ) of node i at level c as the expected
number of steps after which a walker started at i has encountered a fraction c of the Γ classes
for the first time, argmin

t

{
W i(t)≥ c

}
. We consider the CCT across all nodes and characterise

a city by its mean µ(c), its coefficient of variation σ(c) and the level of local spatial correlation
ρ(c). These measures are compared with their corresponding quantity measured in a null-
model, where the class distribution xi is reshuffled across the same graph G through spatial
permutations. We refer to the average deviation of the real quantities to their null-model by ∆µ

“spatial heterogeneity”, ∆σ “spatial variance” and ∆ρ “spatial diversity”.
Higher levels of spatial variance ∆σ ≫ 0 are associated with a more unbalanced spatial

distribution of classes, i.e., citizens experience large variations in the time needed to encounter
all the other ethnicities depending on where they live. Low levels of local spatial diversity
∆ρ indicate that there is no significant difference in the coverage time of neighbouring areas.
When ∆ρ ≫ 0, the differences between neighbouring nodes are substantial, and segregation is
influenced by clusters with similar ethnicity distributions. We analyse metropolitan areas in the
US and the UK using geo-referenced data from Census where the population is divided into up
to 64 and 250 groups, respectively. In Fig. 1b, we look closely at the behaviour of µ(c), σ(c)
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and ρ(c) in London, which is well-known for being characterised by strong ethnic segregation
[6]. Indeed, some areas of the city clearly exhibit substantially larger values of class coverage
time as indicated by high ∆σ . Panel (a) reports all urban areas analysed here in the ∆µ/∆ρ

and ∆σ/∆ρ planes. We note that Boston is placed at the very far ends of both planes. Indeed,
the spatial distribution of Ci(c)/Cnull

i (c) across Boston (map visible in (c)) shows that the city
exhibits opposing spatial patterns. The northern side is characterised by many areas with Ci(c)
up to three times larger than in the null model. Los Angeles, which has a similar wide hot spot
of segregated areas in the centre, shows comparably high spatial variance but lower levels of
spatial heterogeneity.

Remarkably, these measures based purely on diffusion can capture information about the
spatial organisation of ethnicities in a city. We find that the distribution of class coverage
times provides useful insight into the microscopic, mesoscopic, and macroscopic organisation
of ethnicities throughout a city. Furthermore, we find that class coverage times correlate with
many deprivation indices more strongly than other classical segregation measures do. These
results suggest that measuring multi-scale urban segregation through random walk statistics is
potentially more informative than many other current approaches. The framework proposed
here is quite flexible and extensible. Although we have mostly focused on the time to find
a certain ethnic group, irrespective of its relative abundance, one can refine the analysis by
defining the vector xi according to the local abundance of ethnic groups. Likewise, one can
analyse any number of classes, avoiding the many potential biases introduced by aggregating
smaller ethnic groups into arbitrary classes. The consistent behaviour of ∆µ , ∆σ and ∆ρ across
different scales is a desirable property of segregation measures, as also pointed out by classical
and more recent works [7, 8]. The fact that these measures are appropriately normalised by
comparing with the corresponding null-models makes them suitable for comparing the spatial
heterogeneity of the same variable in different systems, irrespective of their peculiar size and
shape, of the actual number of different classes or categories available in each system, and of
the granularity at which spatial information is aggregated.
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Figure 1: Class coverage times and ethnic segregation in urban systems. (a) Metropolitan
areas in the US and the UK in the ∆µ/∆ρ and ∆σ/∆ρ planes where they are compared by the
average deviation from their corresponding null-models. (b) Examples of the class coverage
time distributions for London where the spatial diversity ρ(c), spatial variance σ(c), spatial
heterogeneity µ(c) and their values in the corresponding null-model (black dashed lines) are
plotted as a function of the fraction of visited classes c. (c) Maps of the metropolitan areas
marked in bold in panel (a). The normalised class coverage time Ci(c)/Ci(c)null for c = 0.7
provides detailed insights about the structure of segregation at neighbourhood level.
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